|
|- |bgcolor=#e7dcc3|Coxeter-Dynkin diagram|| = |- |bgcolor=#e7dcc3|4-faces||42 total: 16 r 16 t 10 t |- |bgcolor=#e7dcc3|Cells||280 total: 80 120 t 80 |- |bgcolor=#e7dcc3|Faces||640 total: 480 160 |- |bgcolor=#e7dcc3|Edges||560 |- |bgcolor=#e7dcc3|Vertices||160 |- |bgcolor=#e7dcc3|Vertex figure||80px Triangular prism pyramid |- |bgcolor=#e7dcc3|Coxeter groups||D5, () |- |bgcolor=#e7dcc3|Properties||convex |} In geometry of five dimensions or higher, a cantic 5-cube, cantihalf 5-cube, truncated 5-demicube is a uniform 5-polytope, being a truncation of the 5-demicube. It has half the vertices of a cantellated 5-cube. == Cartesian coordinates == The Cartesian coordinates for the 160 vertices of a cantic 5-cube centered at the origin and edge length 6√2 are coordinate permutations: : (±1,±1,±3,±3,±3) with an odd number of plus signs. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Cantic 5-cube」の詳細全文を読む スポンサード リンク
|